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CHAPTER 3

CENTER MANIFOLDS OF
COUPLED CELL NETWORKS

3.1 Abstract

Dynamical systems with a network structure can display anomalous bifur-
cations as a generic phenomenon. As an explanation for this it has been
noted that homogeneous networks can be realized as quotient networks of
so-called fundamental networks. The class of admissible vector fields for
these fundamental networks is equal to the class of equivariant vector fields
of the regular representation of a monoid. Using this insight, we set up a
framework for center manifold reduction in fundamental networks and their
quotients. We then use this machinery to explain the difference in generic bi-
furcations between three example networks with identical spectral properties
and identical robust synchrony spaces.

3.2 Introduction

Network dynamical systems play an important role in many of the sciences,
with applications ranging from population dynamics to neuron networks and
from electrical circuits to the world wide web. Although they have sparked
an overwhelming amount of research, many questions on network systems
remain open or have unsatisfactory answers. This is partly due to the fact
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that network structure, although perfectly well-defined, often seems to deny
a versatile geometric description. Most striking in this respect is the fact
that a specific network structure is not usually preserved under coordinate
changes.

A remarkable phenomenon that distinguishes network dynamical systems
from arbitrary dynamical systems is synchronisation [22]. Synchronisation
occurs when the agents of a network behave in unison. An example is the
simultaneous firing of neurons. This paper is concerned with synchrony
breaking. This is the phenomenon that less synchronous states may emerge
from synchronous states as model parameters vary. It has been observed that
synchrony breaking is often governed by very unusual bifurcation scenarios
[1, 2, 4, 5, 7, 11, 12, 13, 19, 20, 27]. It is a major challenge to explain why
this occurs, and to provide an efficient methodology for the computation of
these bifurcations.

One successful method for the analysis of synchrony in networks is based
on the so-called groupoid formalism. This formalism was developed by Gol-
ubitsky and Stewart et al. [14, 17, 26, 28] and recently reformulated in the
language of graph fibrations by Deville and Lerman [3]. See also [8] for re-
sults in a similar spirit. We shall work with a different framework though,
that appears more suitable for bifurcation theory. In fact, we shall use the
language of hidden symmetry as described in [21, 24, 25]. This is inspired by
the fact that many of the characteristics of synchrony breaking, including the
existence of robust invariant spaces, degenerate eigenvalues and anomalous
generic bifurcations, are quite prevalent in the setting of ODEs with symme-
try. More precisely, our formalism exploits the fact that every homogeneous
coupled cell network can be realised as the quotient network of a so-called
fundamental network. This latter network admits a purely geometric char-
acterisation, as its admissible vector fields are exactly the equivariant vector
fields of the regular representation of a monoid (a monoid is a semigroup
with unit).

It is well-known that all the bounded solutions that emerge from a syn-
chronous steady state through a synchrony breaking bifurcation, are con-
tained in a so-called local center manifold. The main result of this paper is a
center manifold theorem for homogeneous networks. It states that network
structure can somehow be preserved under center manifold reduction. This
means in particular that the dynamics on the center manifold is restricted
by symmetry. Theorem 3.2.1 will be formulated more precisely as Theorems
3.6.1 and 3.7.1.

Theorem 3.2.1. Let Γ be an admissible vector field for a fundamental net-
work with symmetry monoid Σ and let x0 be a fully synchronous steady state
of Γ. Then there exists a Σ-invariant local center manifold Mc for Γ near
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CHAPTER 3. CENTER MANIFOLDS OF COUPLED CELL NETWORKS

x0.
The restriction Γ|Mc to this local center manifold is Σ-equivariant and

can therefore be interpreted as an admissible vector field in an appropriate
way.

A center manifold of each quotient of the fundamental network is con-
tained in the center manifold of the fundamental network as a robust syn-
chrony space.

Theorem 3.2.1 is reminiscent of the well-known fact that the local center
manifold of an ODE with a compact symmetry group can be assumed sym-
metric [10, 9, 18, 15, 16, 29]. The proof of this latter result strongly depends
on the fact that every compact group has an invariant measure, and hence
this proof does not apply to semigroups and monoids. Our proof of Theo-
rem 3.2.1 shows that this technical problem can be overcome for fundamental
networks.

The remainder of this paper is organised as follows. In Section 3.3 we
illustrate the impact of hidden network symmetry at the hand of three ex-
amples. In Section 3.4 we introduce our general setup, and recall some basic
theorems on which this paper builds. In Section 3.5 we prove a center man-
ifold theorem for fundamental networks. After this, Sections 3.6 and 3.7 are
concerned with the symmetry and synchrony properties that are preserved
under center manifold reduction. Finally, in Section 3.8 we apply our general
results to three examples.

Acknowledgement
The authors would like to thank André Vanderbauwhede for explaining sev-
eral subtleties of center manifold reduction, and for an inspiring and encour-
aging discussion on the subject. We also thank Florian Noethen for pointing
out several mistakes in an early version of this manuscript.

3.3 Three Examples

To illustrate the impact of hidden symmetry, let us consider the following
three networks. They will be the leading examples of this paper.
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1 2

3

A
1 2

3

B
1 2

3

C

Networks A, B and C give rise to the following ordinary differential equa-
tions.

9x1 = f(x1, x2, x3, λ)

A : 9x2 = f(x2, x3, x3, λ)

9x3 = f(x3, x3, x3, λ)

9x1 = f(x1, x2, x2, x3, λ)

B : 9x2 = f(x2, x3, x2, x3, λ)

9x3 = f(x3, x3, x2, x3, λ)

9x1 = f(x1, x2, x1, x3, x2, λ)

C : 9x2 = f(x2, x3, x1, x3, x2, λ)

9x3 = f(x3, x3, x1, x3, x2, λ)

(3.3.1)

Here, x1, x2, x3 ∈ R describe the states of the cells in the network, while
λ ∈ R is a parameter. We shall assume that the “response function” f :
R3 × R → R is smooth. Note that the network structure does not change
as λ varies. Instead, one could think of the response function f as being
variable in λ.

The ODEs in (5.5.2) have several properties that distinguish them from
arbitrary three-dimensional dynamical systems. First of all, one can observe
that setting x1 = x2 = x3 in (5.5.2) yields that 9x1 = 9x2 = 9x3, and similarly
that x2 = x3 implies 9x2 = 9x3. This means that in all three networks the
polydiagonal subspaces or synchrony subspaces

{x1 = x2 = x3} and {x2 = x3}

are preserved under the dynamics (i.e. they are flow-invariant). In particu-
lar, this is true for any choice of response function f , so that these invariant
subspaces only depend on the network structure of the ODEs. One therefore
calls them robust synchrony spaces. It can also be checked that the above
two synchrony spaces are the only such robust synchrony spaces (in all three
examples).

One may now ask how synchronous solutions emerge or disappear in a
local bifurcation. We will answer this question in Section 3.8 by means of
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center manifold reduction, but we shall indicate a few important aspects of
this method already here. First of all, let us assume that

f(0, 0) = 0 ,

so that x = 0 is a fully synchronous steady state for the parameter value
λ = 0. Center manifold reduction starts with computing the center subspace
at (x, λ) = (0, 0). This space is determined by the Jacobian matrices of the
ODEs in (5.5.2). Let us write γif (x, λ) (i = A,B,C) for the vector fields at
the right hand side of (5.5.2), and let us set a := Dx1f(0, 0), b := Dx2f(0, 0),
c := Dx3

f(0, 0), d := Dx4
f(0, 0) and e := Dx5

f(0, 0). In terms of these
quantities, the Jacobian matrices are given by

Dxγ
A
f (0, 0) =

¨

˝

a b c
0 a b+ c
0 0 a+ b+ c

˛

‚ (3.3.2)

Dxγ
B
f (0, 0) =

¨

˝

a b+ c d
0 a+ c b+ d
0 c a+ b+ d

˛

‚

Dxγ
C
f (0, 0) =

¨

˝

a+ c b+ e d
c a+ e b+ d
c e a+ b+ d

˛

‚

We may now observe the remarkable fact that all three Jacobian matrices in
(5.5.7) have a double real eigenvalue equal to a. If we furthermore assume
that b 6= 0 and that b + c 6= 0 (for network A), b + c + d 6= 0 (for network
B), b + c + d + e 6= 0 (for network C), then this eigenvalue a has algebraic
multiplicity two and geometric multiplicity one (this is again true in all
three examples). Such a degeneracy in the spectrum is very exceptional
among Jacobian matrices of arbitrary ODEs, but here it is forced by the
network structure. In particular, it implies that the center manifold of the
ODEs is two-dimensional as soon as a = 0, which in turn indicates that a
quite complicated bifurcation may occur. Using center manifold reduction
we shall verify in Section 3.8 that networks A, B and C can generically
support precisely one type of steady state bifurcation when the eigenvalue
a crosses zero. It is a so-called synchrony breaking bifurcation in which a
fully synchronous branch, a partially synchronous branch and a fully non-
synchronous branch of steady states emerge. Table 3.1 lists the asymptotic
growth rates of these branches in λ, and their possible stability types. Note
that although network C has identical synchrony and spectral properties as
networks A and B, it admits a totally different generic synchrony breaking
steady state bifurcation. In particular, in network C the stability of the fully
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Branches in Examples A and B
Synchrony Asymptotics λ < 0 λ > 0
Full ∼ λ −− ++
Partial ∼ λ +− −+

None ∼
?
λ +−, −−

Branches in Example C
Synchrony Asymp. λ < 0 λ > 0 λ < 0 λ > 0 λ < 0 λ > 0
Full ∼ λ −− ++ −− ++ −− ++
Partial ∼ λ ++ −− +− −+ +− −+
None ∼ λ +− −+ ++ −− +− −+

Table 3.1: Asymptotics in λ of the three branches of steady states that emerge from
a synchrony breaking steady state bifurcation in networks A, B and C. The table
also indicates their stability through the signs of two out of three eigenvalues, where
for network C there are three possible scenarios.

synchronous branch may be transferred either to the partially synchronous
branch or to the fully non-synchronous branch. Another curiosity is that the
non-synchronous branch of network C is tangential to the space {x2 = x3},
i.e. it is partially synchronous to first order in λ (this will be shown in
Section 3.8).

We remark that non-trivial invariant subspaces, spectral degeneracies
and anomalous bifurcations are all very common in the setting of equivariant
dynamics [15, 16], where they are forced by symmetry. On the one hand, it is
obvious that networksA,B andC are not symmetric under any permutation
of cells. As a result, none of the ODEs in (5.5.7) is equivariant under a
linear group action. On the other hand, it was shown in [23] that the robust
synchrony spaces, the degenerate spectrum and the unusual bifurcations of
networksA, B and C can all be explained from hidden semigroup symmetry.

For example, the differential equations of network A are equivariant un-
der the noninvertible linear map

S : (x1, x2, x3) 7→ (x2, x3, x3)

that transforms solutions of the ODEs into solutions. In fact, every vector
field that commutes with S is necessarily an admissible vector field for net-
work A. This is because network A is a so-called fundamental network, see
Section 3.4. Moreover, it is not hard to check that any ODE that admits
the symmetry S must have the invariant subspaces {x1 = x2 = x3} and
{x2 = x3}, and that any matrix that commutes with S must have a double
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eigenvalue. We will also prove in Section 3.6 that the symmetry S is inher-
ited by the center manifold of network A. The restrictions that symmetry
imposes on the center manifold dynamics force the remarkable synchrony
breaking bifurcation of network A.

Similar things can be said for networks B and C, even though one can
show that γBf and γCf commute with no linear maps other than the iden-
tity. On the other hand, networks B and C can be realised as quotient
networks of networks with semigroup symmetry. In particular, network B
is the restriction to the robust synchrony space {X2 = X3} of the network
differential equations

rB :

9X1 = f(X1, X2, X3, X4, λ)
9X2 = f(X2, X4, X3, X4, λ)
9X3 = f(X3, X4, X3, X4, λ)
9X4 = f(X4, X4, X3, X4, λ) ,

(3.3.3)

corresponding to the network

2 1

43

rB

These differential equations commute with the two noninvertible linear maps

(X1, X2, X3, X4) 7→ (X2, X4, X3, X4) ,

(X1, X2, X3, X4) 7→ (X3, X4, X3, X4) .

Conversely, every ODE that is equivariant under these two symmetries is
necessarily of the form (3.3.3) for some f(X,λ), i.e. it is admissible for
network rB. We call network rB the fundamental network of network B. It
was shown in [21] that every homogeneous network is the quotient of such a
fundamental network with a semigroup of symmetries. We will recover this
fact in Section 3.4.

It turns out that the fundamental network of C is given by
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rC :

9X1 = f(X1, X2, X3, X4, X5, λ)
9X2 = f(X2, X4, X3, X4, X5, λ)
9X3 = f(X3, X5, X3, X4, X5, λ)
9X4 = f(X4, X4, X3, X4, X5, λ)
9X5 = f(X5, X4, X3, X4, X5, λ) ,

(3.3.4)

corresponding to the graph

1

5

3 4

2 rC

Indeed, network C arises as the restriction of network rC to the robust syn-
chrony space {X1 = X3, X2 = X5}. Moreover, the equations of motion
(3.3.4) of network rC are precisely the equivariant ODEs for the noninvert-
ible linear maps

(X1, X2, X3, X4, X5) 7→ (X2, X4, X3, X4, X5) ,

(X1, X2, X3, X4, X5) 7→ (X3, X5, X3, X4, X5) .
(3.3.5)

The symmetries of networks rB and rC are inherited by their center mani-
folds. We will see in Sections 3.7 and 3.8 how they in turn affect the center
manifolds of B and C, thus forcing the anomalous bifurcations in these two
original networks.
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3.4 Homogeneous and Fundamental Networks

In this section we give a short overview of the results and definitions in [21,
24, 25]. We shall be concerned with ODEs of the general form

9x1 = f(xσ1(1), . . . xσn(1))

9x2 = f(xσ1(2), . . . xσn(2))

...
9xN = f(xσ1(N), . . . xσn(N))

. (3.4.1)

Here, every variable xj takes values in the same vector space V and can be
though of as the state of cell #j in a network. For every i ∈ {1, . . . n},

σi : {1, . . . N} → {1, . . . N}

is a function from the collection of cells of the network to itself. Intuitively,
these functions may be thought of as representing the different types of input
in the network. In particular, if i ∈ {1, . . . n} and j, k ∈ {1, . . . N} are such
that σi(j) = k, then this is to be interpreted as cell #j receiving an input
of type i from cell #k. Note that there is no reason to assume that any of
the functions σi is a bijection.

The way the inputs of a cell are processed is determined by the properties
of the response function f : V n → V , whose different arguments distinguish
different types of input. Note that the same response function appears in
every component of (3.4.1), meaning that every cell responds equally to its
inputs. This may be interpreted as the cells being identical. We there-
fore say that (3.4.1) represents a homogenous coupled cell network. Another
assumption we will make is that the total set of input functions

Σ := {σ1, . . . , σn}

is closed under composition of maps. This is no restriction because one
may add compositions of input functions to Σ until this process terminates,
see [25]. Furthermore, enlarging Σ only enlarges the class of admissible
vector fields. Being closed under composition, Σ has the structure of a
semigroup. To model internal dynamics, we will moreover assume without
loss of generality that σ1 is the identity on {1, . . . N}, making Σ in fact a
monoid. For f : V n → V , we will then denote the vector field at the right
hand side of equation (3.4.1) by

γf : V N → V N .
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Example 3.4.1. Networks A, B and C are examples of homogeneous net-
works. The maps σ1, σ2, σ3, σ4, σ5 are given in this case by

A 1 2 3
σ1 1 2 3
σ2 2 3 3
σ3 3 3 3

B 1 2 3
σ1 1 2 3
σ2 2 3 3
σ3 2 2 2
σ4 3 3 3

C 1 2 3
σ1 1 2 3
σ2 2 3 3
σ3 1 1 1
σ4 3 3 3
σ5 2 2 2

.

For all three networks, these maps are closed under composition, i.e. they
form a semigroup Σ. 4

Definition 3.4.2. Let P = {Pi}ri=1, Pi ⊂ {1, 2, . . . , N} be a partition of
the collection of nodes of a homogeneous network. The synchrony space or
polydiagonal space corresponding to the partition P is the subspace

SynP := {xi = xj if i and j are in the same element of the partition P} ⊂ V N .

A synchrony space is called robust if for every f : V n → V we have
γf (SynP ) ⊂ SynP , i.e. if it is an invariant space for every γf .

It was shown in [25] that adding compositions σi ◦ σj to Σ so as to make Σ
closed under composition does not affect the set of robust synchrony spaces
of the network.

The idea is now to define a bigger network that contains the original
network (3.4.1) as a robust synchrony space. It turns out that the admis-
sible vector fields of this so-called fundamental network are precisely the
equivariant vector fields for the regular representation of the monoid Σ.

Definition 3.4.3. Assume that Σ has been completed to a monoid, let
n = #Σ, and let f : V n → V . The fundamental network vector field Γf of
the network vector field γf is the vector field on

⊕
σi∈Σ V = V n defined by

(Γf )σi = f ◦Aσi . (3.4.2)

Here the linear maps Aσi : V n → V n are defined by

(AσiX)σj := Xσj◦σi . (3.4.3)

It was shown in [21] that Γf is an admissible vector field for the homogeneous
network that has the elements of Σ as its cells, and an arrow of type i from cell
σk to cell σj if σi◦σj = σk. This latter network can be thought of as a Cayley
graph of Σ, see [21]. The following theorems motivate the introduction of
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the monoid Σ and the fundamental network. Their proofs can be found in
[24]. Nevertheless, we have chosen to include the proof of Theorem 3.4.5 due
to its importance in this paper, and to illustrate the general method of proof
for the theorems in this section.

Theorem 3.4.4. The linear maps {Aσi}σi∈Σ form a representation of the
monoid Σ. That is, we have Aσi ◦ Aσj = Aσi◦σj for all σi, σj ∈ Σ and
Aσ1 = Id.

Theorem 3.4.5. A vector field F : V n → V n is of the form F = Γf for
some f : V n → V if and only if we have F ◦Aσi = Aσi ◦ F for all σi ∈ Σ.

Proof. We will first show that Γf ◦ Aσi = Aσi ◦ Γf for all f : V n → V and
σi ∈ Σ. We see that on the one hand side we have

[(Γf ◦Aσi)(X)]σk = [Γf (AσiX)]σk = (f ◦Aσk ◦Aσi)(X) . (3.4.4)

On the other, we see that

[(Aσi ◦ Γf )(X)]σk = [Γf (X)]σk◦σi

= (f ◦Aσk◦σi)(X) = (f ◦Aσk ◦Aσi)(X) ,
(3.4.5)

where in the last step we have used the result of Theorem 3.4.4. This proves
the first part of the theorem.

As for the second, suppose that F ◦ Aσi = Aσi ◦ F for all σi ∈ Σ. Using
the definition of Aσi and the fact that σ1 ◦σi = σi for all σi ∈ Σ, we see that

[F (X)]σi = [(Aσi ◦F )(X)]σ1
= [(F ◦Aσi)(X)]σ1

= (Fσ1
◦Aσi)(X) , (3.4.6)

for all X ∈ V n. Hence we see that F = Γf for f = Fσ1
. This proves the

second part of the theorem.

The following theorem provides the relation between the original network γf
and the new network Γf .

Theorem 3.4.6. For any node p ∈ {1, . . . N}, define the map πp : V N → V n

by
πp(x)σj := xσj(p) .

Then πp is a semiconjugacy between γf and Γf . That is, we have

πp ◦ γf = Γf ◦ πp .

Theorem 3.4.6 follows quite quickly from the following lemma. Both results
are proven in [24].
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Lemma 3.4.7. For any node p ∈ {1, . . . N} and input function σi, we have

Aσi ◦ πp = πσi(p) .

Remark 3.4.8. Note that the map πp is injective if and only if

{σi(p) : σi ∈ Σ} = {1, . . . N} .

This is to be interpreted as the cell p being influenced by every other cell
in the network. In particular, it is natural to assume that at least one such
cell exists in the (original) network. In that case, the dynamics of γf is
embedded in that of Γf as the restriction of Γf to the space

{Xσi = Xσj if σi(p) = σj(p)}

for any such node p for which πp is injective. Note that this space is a polydi-
agonal space. Furthermore, since it is invariant for every f , we conclude that
this space is in fact a robust synchrony space of the fundamental network.
4

3.5 Center Manifold Reduction for Networks

In this section we shall describe the main result of this paper. We start with a
well-known theorem on the existence of a local invariant manifold near every
steady state of an ODE. The most important feature of this so-called center
manifold is that it contains all bounded (small) solutions, such as steady
state points and (small) periodic orbits. We then generalize this result to
the setting of fundamental networks, in a way that allows us to retain their
symmetries. Because we know from Theorem 3.4.5 that these symmetries
completely describe the fundamental network vector field, this will in turn
allow us to give a full description of the vector fields that one obtains after
restricting to the center manifold. In this section and the ones following it, a
norm will always be the Euclidian norm or an induced operator norm, unless
stated otherwise.

Let us first consider differential equations of the general form

9x = F (x) , (3.5.1)

where F : Rn → Rn is of class Ck for some k ≥ 1 and satisfies F (0) = 0.
Without loss of generality, we may write

9x = Ax+G(x) . (3.5.2)
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Here, A = DF (0), from which it follows that G : Rn → Rn is again of class
Ck and satisfies G(0) = 0 and DG(0) = 0. Let us furthermore denote by Xc

the center subspace of A. That is, Xc is the span of the generalized eigen-
vectors corresponding to the purely imaginary eigenvalues of A. Likewise,
we denote by Xh the hyperbolic subspace of A, which corresponds to the
remaining eigenvalues. These two spaces complement each other in Rn, i.e.
we have

Rn = Xc ⊕Xh . (3.5.3)

Finally, let πc and πh be the projections onto Xc and Xh respectively, cor-
responding to this decomposition. The following theorem is well-known.

Theorem 3.5.1 (Center Manifold Reduction). Given A ∈ L(Rn) and
k ∈ N, there exists an ε = ε(A, k) > 0 such that the following holds: If
G : Rn → Rn is of class Ck with G(0) = 0 and DG(0) = 0 and furthermore
satisfies

• sup
x∈Rn
||DjG(x)||<∞ for 0 ≤ j ≤ k,

• sup
x∈Rn
||DG(x)||< ε,

then there exists a function ψ : Xc → Xh of class Ck such that its graph in
Rn is an invariant manifold for the system (3.5.1). More precisely, we have

Mc := {xc +ψ(xc) : xc ∈ Xc} = {x ∈ Rn : sup
t∈R
||πhφt(x)||<∞} . (3.5.4)

Here φt denotes the flow of equation (3.5.1). The function ψ satisfies ψ(0) =
0 and Dψ(0) = 0.

Mc is called the (global) center manifold of (3.5.1). In particular, it
contains all bounded solutions to (3.5.1), such as steady state points and
periodic solutions.

A comprehensive proof of this theorem can be found in [29]. This reference
also describes a way around the seemingly strict conditions on the size of
the nonlinearity G and its derivatives: if G does not satisfy these conditions,
then one simply multiplies it by a real-valued bump function with small
enough support. Since in bifurcation theory one is generally only interested
in orbits close to the bifurcation point, this is often a viable solution.

Moreover, if the vector fields F and G are equivariant under the action
of some compact group G, then this bump function can be chosen invariant
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under this action. As a result, the center manifold is G-invariant. To make
this more precise, let us assume that the action of G is by linear maps
{Ag : g ∈ G}. This will for example be the case after applying Bochner’s
linearisation theorem, see [6]. By compactness of G, we may also assume
that G acts by isometries with respect to a certain norm ||·||G . That is, we
have ||Agx||G= ||x||G for all g ∈ G and x ∈ Rn. Let us furthermore denote
by Br an open ball around the origin in Rn of radius r > 0 with respect to
this norm. Let χ be a smooth bump function from Rn to R that takes the
value 1 inside B1 and 0 outside B2. It can then be shown that the vector
field

rGρ(x) := χ(ρ−1x)G(x) (3.5.5)

satisfies the necessary bounds of Theorem 3.5.1 for small enough ρ > 0.
However, this function will in general not be G-equivariant anymore, as the
bump function χ may not be G-invariant. Instead, we may define a new
bump function

χ(x) :=

∫
G
χ(Agx)dµ , (3.5.6)

where dµ denotes the normalised Haar measure on G (or simply the nor-
malised counting measure, if G is finite). The function χ is now G-invariant
by construction. From this it follows that

Gρ(x) := χ(ρ−1x)G(x) (3.5.7)

is G-equivariant, because

Gρ(Agx) = χ(ρ−1Agx)G(Agx) = χ(Agρ
−1x)AgG(x)

= χ(ρ−1x)AgG(x) = Agχ(ρ−1x)G(x) = AgGρ(x) .
(3.5.8)

As G acts by isometries, we see that χ again takes the value 1 inside B1 and
vanishes outside B2. Hence, as is the case for rGρ, we may conclude that
Gρ satisfies the necessary bounds of Theorem 3.5.1 for small enough ρ > 0.
It then follows from the equivariance of F and Gρ that center manifold
reduction can in fact be done in an equivariant manner, meaning that the
function ψ : Xc → Xh is equivariant and that Mc is invariant under the
symmetries.

Unfortunately we cannot apply the same procedure in the setting of net-
works and fundamental networks, as it relies heavily on the symmetries Ag
being invertible (for example in the existence of an invariant measure). As
an example, we note that any function χ : R3 → R that is invariant under
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the symmetry (X1, X2, X3) 7→ (X2, X3, X3) of Example A would necessarily
be constant along the line {X2 = X3 = 0}. It is clear that this would exclude
any non-trivial bump function centered around the origin. Instead, we will
show that one can replace the function f in Γf in a way to make Γf satisfy
the necessary bounds. Note that in this way the symmetries of Γf are not
broken.

To formalise this procedure, let us first describe our setting a bit more
accurately. We want to study bifurcation problems, so we will assume from
now on that the response function f depends on parameters, i.e. we assume
that

f : V n × Ω→ V with Ω ⊂ Rl

is a smooth function of the network states and of parameters λ ∈ Ω. For the
purpose of center manifold reduction, it is useful to view these parameters
as variables of the ODEs, i.e. to consider the augmented network equations

ˆ

9x
9λ

˙

=

ˆ

Γf (x, λ)
0

˙

, (3.5.9)

with Γf defined as before by

Γf (x, λ)σi := f(Aσix, λ) .

We will set x := (x, λ) ∈ V n ×Ω and Γf := (Γf , 0) : V n ×Ω→ V n ×Ω, and
will henceforth abbreviate equation (3.5.9) as

9x = Γf (x) . (3.5.10)

It is clear that this system is now equivariant under symmetries of the form

Aσi : (x, λ) 7→ (Aσix, λ) for i ∈ {1 . . . n} .

Furthermore, note that in this notation we also have

(Γf )i = f ◦Aσi for i ∈ {1 . . . n} ,
(Γf )i = 0 for i = n+ 1 ,

(3.5.11)

where we denote by xn+1 the λ-part of the vector x = (x, λ) ∈ V n × Ω.
Following the setting of Theorem 3.5.1, we can write Γf (x) as

Γf (x) = DΓf (0)x+G(x) , (3.5.12)

where G : V n × Ω → V n × Ω satisfies G(0) = 0 and DG(0) = 0. The first
thing to note is that DΓf (0)x is again of the form Γh(x), namely for

h(x) = Df(0)x =

n+1∑
k=1

Dkf(0)xk . (3.5.13)
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Indeed, for i ∈ {1, . . . n} we have

(DΓf (0)x)i =

n+1∑
j=1

DΓf (0)
i,j
xj

=

n+1∑
j=1

Dj(f ◦Aσi)(0)xj

=

n+1∑
j=1

n+1∑
k=1

Dkf(0)(Aσi)k,jxj

=

n+1∑
k=1

Dkf(0)(Aσix)k = (Γh(x))i ,

(3.5.14)

whereas

(DΓf (0)x)n+1 =

n+1∑
j=1

DΓf (0)
n+1,j

xj = 0 . (3.5.15)

It follows that we may write G(x) = Γf (x) − Γh(x) = Γg(x), where g(x)
equals f(x) − h(x) = f(x) −Df(0)x. In particular, assuming that f(0) :=
f(0, 0) = 0, we see that g(0) = 0 and Dg(0) = 0. Summarising, we have the
following equivalent of (3.5.2):

Γf (x) = DΓf (0)x+ Γg(x) with g(0) = 0 and Dg(0) = 0 . (3.5.16)

We can now proceed to adapt Γg(x) so as to make it satisfy the conditions
of Theorem 3.5.1. To this end, we define Br to be an open ball in V n × Ω
with radius r centered around the origin. Furthermore, let χ(x) be a smooth
function from V n×Ω to R that takes the value 1 inside B1 and 0 outside B2.
Analogous to the procedure for general vector fields, we now set gρ(x) :=
χ(ρ−1x)g(x) for ρ ∈ R>0, which equals g inside Bρ and which vanishes
outside B2ρ. The following two theorems assure us that the system given by

9x = DΓf (0)x+ Γgρ(x) (3.5.17)

satisfies the necessary conditions of Theorem 3.5.1 for small enough ρ, yet
agrees with our initial system 3.5.10 in a small enough neighbourhood around
the origin.

Proposition 3.5.2. For any function g : V n×Ω→ V and any ρ > 0, there
exists an open neighbourhood in V n×Ω centered around the origin on which
Γg(x) and Γgρ(x) agree.
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Proof. Remember that we have Γg(x)n+1 = Γgρ(x)n+1 = 0 for every x ∈
V n × Ω, hence there is nothing to check here. For i 6= n + 1, the i-th
component of Γg(x) equals g ◦ Aσi(x), whereas that of Γgρ(x) equals gρ ◦
Aσi(x). Because g and gρ agree on Bρ, these components are equal on the
set A−1

σi
(Bρ), which by the linearity of Aσi is an open set containing 0. The

required neighbourhood is then obtained by taking the intersection of these
sets for the different values of i.

Theorem 3.5.3. Let g : V n × Ω → V be of class Ck for some k > 0. For
all ρ > 0 and 0 ≤ j ≤ k we have

sup
x∈V n×Ω

||DjΓgρ(x)||<∞ . (3.5.18)

If g furthermore satisfies g(0) = 0 and Dg(0) = 0, then

lim
ρ↓0

sup
x∈V n×Ω

||DΓgρ(x)||= 0 . (3.5.19)

Proof. We start with the claim on boundedness. It is clear that we only
need to show this for the separate components of Γgρ(x) and their derivatives.
However, writing gρ = H we see that every (non-trivial) component of Γgρ(x)
can be written in the general form

Γgρ(x)i = (H ◦Aσi)(x) , (3.5.20)

where H is a Ck-function with compact support in V n × Ω. It is clear
that any function that can be written in this way is uniformly bounded.
Moreover, taking the derivative gives

D(H ◦Aσi)(x) = DH(Aσix) ·Aσi = ((DH ·Aσi) ◦Aσi)(x) , (3.5.21)

which is again of the form (3.5.20), where our new H is now given by the
Ck−1-function DH · Aσi . We conclude by induction that indeed the first k
derivatives of Γgρ are uniformly bounded. This proves the first part of the
theorem.

As for the second claim, let i ∈ {1, . . . n}, j ∈ {1, . . . n + 1} and ρ > 0.
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Then

sup
x∈V n×Ω

||DΓgρ(x)i,j || = sup
x∈V n×Ω

||Dj(Γgρ)i(x)||

= sup
x∈V n×Ω

||Dj(gρ ◦Aσi)(x)||

= sup
x∈V n×Ω

||
n+1∑
k=1

Dkgρ(Aσi(x))(Aσi)k,j ||

≤
n+1∑
k=1

sup
x∈V n×Ω

||Dkgρ(Aσi(x))||·||(Aσi)k,j ||

≤
n+1∑
k=1

sup
x∈V n×Ω

||Dkgρ(x)||·||(Aσi)k,j ||

≤
n+1∑
k=1

sup
x∈V n×Ω

||Dkgρ(x)|| ,

(3.5.22)

where in the last step we have used the fact that every component of Aσi
is either some identity matrix or a zero-matrix, from which it follows that
||(Aσi)k,j ||≤ 1 for all 1 ≤ k, j ≤ n + 1. From the above we see that it is
sufficient to prove that

lim
ρ↓0

sup
x∈V n×R

||Dgρ(x)||= 0 . (3.5.23)

The proof of this fact can directly be copied from [29], the only difference be-
ing that gρ(x) does not map V n×Ω to itself. Nevertheless, we will reproduce
it here for the sake of completeness. For all ρ > 0 we have

sup
x∈V n×Ω

||Dgρ(x)|| = sup
||x||≤2ρ

||Dgρ(x)||

= sup
||x||≤2ρ

||χ(ρ−1x)Dg(x) + ρ−1g(x)Dχ(ρ−1x)||

≤ sup
||x||≤2ρ

||χ(ρ−1x)|| sup
||x||≤2ρ

||Dg(x)||

+ ρ−1 sup
||x||≤2ρ

||g(x)|| sup
||x||≤2ρ

||Dχ(ρ−1x)||

≤ sup
||x||≤2ρ

C1||Dg(x)||+ρ−1C2 sup
||x||≤2ρ

||g(x)|| ,

(3.5.24)

where we have set

C1 := sup
x∈V n×Ω

||χ(x)|| , (3.5.25)
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and

C2 := sup
x∈V n×Ω

||Dχ(x)|| . (3.5.26)

By the mean value theorem we have, whenever ||x||≤ 2ρ,

||g(x)||= ||g(x)− g(0)||≤ ||x|| sup
||x||≤2ρ

||Dg(x)|| . (3.5.27)

Combining inequalities (3.5.24) and (3.5.27), we get

sup
x∈V n×Ω

||Dgρ(x)||

≤ sup
||x||≤2ρ

C1||Dg(x)||+ρ−1C2 sup
||x||≤2ρ

||x|| sup
||x||≤2ρ

||Dg(x)||

= sup
||x||≤2ρ

C1||Dg(x)||+ρ−1C2 · 2ρ sup
||x||≤2ρ

||Dg(x)||

= (C1 + 2C2) sup
||x||≤2ρ

||Dg(x)|| .

(3.5.28)

Because g(x) is at least C1 and Dg(0) = 0, it follows that

lim
ρ↓0

sup
x∈V n×Ω

||Dgρ(x)||= (C1 + 2C2) lim
ρ↓0

sup
||x||≤2ρ

||Dg(x)||= 0 . (3.5.29)

This proves the theorem.

Theorem 3.5.3 implies that the system

9x = DΓf (0)x+ Γgρ(x) (3.5.30)

admits a global center manifold for small enough ρ > 0. Recall that the
vector field on the right hand side of (3.5.30) can be written as

DΓf (0)x+ Γgρ(x) = Γh(x) + Γgρ(x) = Γh+gρ
(x) , (3.5.31)

where h(x) = Df(0)x. It follows that this vector field is again {Aσi}-
equivariant. Moreover, by Proposition 3.5.2 it agrees with our initial vector
field Γf on an open neighbourhood around the origin. In the coming sec-
tions we shall investigate the properties of the center manifold of equation
(3.5.30).
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3.6 Symmetry and the Center Manifold

Recall that the global center manifold of an ODE at a steady state point con-
tains all its bounded solutions, such as the steady state points and periodic
orbits near the steady state. Therefore, when studying local bifurcations
one is often only interested in the dynamics on this manifold. We will now
show that the center manifold dynamics inherits the symmetries of the origi-
nal fundamental network. Moreover, we show that every possible equivariant
vector field on the center manifold may arise after center manifold reduction.

We begin by fixing some notation. Given a smooth function f : V n×Ω→
V , we may view the restriction Γf (•, 0) of Γf to {λ = 0} as a function from
V n to itself. Let us denote this function by

Γf,0 : V n → V n .

We will then write

Wc,Wh ⊂ V n

for the center subspace and the hyperbolic subspace ofDΓf,0(0), respectively.
Recall that we have

V n = Wc ⊕Wh , (3.6.1)

and let us denote by Pc and Ph the projection on Wc and Wh respectively,
corresponding to this decomposition. The spaces Wc and Wh are invari-
ant under the action of {Aσi}ni=1. More generally, given any differentiable
function F : Rn → Rn and linear function B : Rn → Rn such that

F ◦B = B ◦ F , (3.6.2)

we also have that

DF (0) ◦B = B ◦DF (0) . (3.6.3)

From this it follows that B maps the center and hyperbolic subspaces of
DF (0) into themselves. The following theorem states that the dynamics of
Γf , restricted to its center manifold, is conjugate to a Σ-equivariant system
on Wc.

Theorem 3.6.1. Let k ≥ 1 and let f : V n×Ω→ V be of class Ck. Assume
that the vector field Γf (x) satisfies the conditions of Theorem 3.5.1, so that
its center manifold Mc exists. Then the projection P : V n × Ω → Wc × Ω,

77



CHAPTER 3. CENTER MANIFOLDS OF COUPLED CELL NETWORKS

given by P (x, λ) := (Pc(x), λ) has the property that its restriction P |Mc

bijectively conjugates Γf |Mc to an ODE on Wc × Ω of the form

9x = R(x, λ) ,

9λ = 0 .
(3.6.4)

Here, R : Wc × Ω→Wc is a Ck-function satisfying

• R(0, 0) = 0.

• The center subspace of DR0(0) is the full space Wc, where we have set
R0 = R(•, 0) : Wc →Wc as the restriction of R to {λ = 0}.

• R(Aσix, λ) = AσiR(x, λ) for all i ∈ {1, . . . n} and (x, λ) ∈ Wc × Ω.
Here Aσi denotes the restriction of Aσi to Wc.

We will call the map R : Wc × Ω → Wc of the preceding theorem the
reduced vector field of the network vector field Γf . Note that the statement
of Theorem 3.6.1 is not that any vector field R that satisfies the conclusions
of Theorem 3.6.1 can be obtained as the reduced vector field of a network
vector field. This issue will be addressed in Theorems 3.6.4 and 3.6.5 and
Remarks 3.6.6 and 3.6.7, where it is shown that indeed Theorem 3.6.1 exactly
describes all possible reduced vector fields.

The result of Theorem 3.6.1 hinges mostly on a corollary of Theorem
3.5.1, which states that symmetries of a vector field are passed on to its
center manifold. More precisely, we have the following result.

Lemma 3.6.2. Let F be an arbitrary vector field on Rn satisfying the con-
ditions of Theorem 3.5.1. Keeping with the notation, let ψ : Xc → Xh be the
map whose graph is the center manifold. Given a linear map B : Rn → Rn
such that F ◦B = B◦F , we also have ψ◦B = B◦ψ. Furthermore, the center
manifold is invariant under B, i.e. we have Bx ∈Mc whenever x ∈Mc.

Proof. We will begin by showing the invariance of Mc. We remarked earlier
that DF (0) commutes with B whenever F does, and that both Xc and Xh

are B-invariant spaces. From this it follows that the projections πc and πh
with respect to the decomposition

Rn = Xc ⊕Xh (3.6.5)

commute with B as well. Recall that the center manifold is given by

Mc = {x ∈ Rn :
t∈R
sup ||πhφt(x)||<∞} , (3.6.6)
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where φt(x) denotes the flow of F . Moreover, we have the following equality
for the flow, valid for all x ∈ Rn and t ∈ R,

φt(Bx) = Bφt(x) . (3.6.7)

This follows directly from the symmetry of F . Now suppose x ∈Mc. Then

||πhφt(Bx)|| = ||πhBφt(x)||
= ||Bπhφt(x)||≤ ||B|| ||πhφt(x)|| .

(3.6.8)

From this it follows that

t∈R
sup ||πhφt(Bx)||<∞ . (3.6.9)

Hence, Bx is an element of Mc as well.
To show that ψ ◦B = B ◦ψ, note that the center manifold is (also) given

by

Mc = {xc + ψ(xc) : xc ∈ Xc} . (3.6.10)

In other words, given an element x ∈ Mc we may write x = xc + ψ(xc) for
some xc = πc(x) ∈ Xc. From this we see that

πh(x) = ψ(xc) = ψ(πc(x)) . (3.6.11)

Now given xc ∈ Xc, we know that xc +ψ(xc) is an element of Mc. Hence by
our first result, so is Bxc+Bψ(xc). Applying equation (3.6.11) to the latter
gives

πh(Bxc +Bψ(xc)) = ψ(πc(Bxc +Bψ(xc))) . (3.6.12)

Hence, since ψ(xc) is an element of Xh and B leaves both Xc and Xh in-
variant, equation (3.6.12) reduces to

Bψ(xc) = ψ(Bxc) . (3.6.13)

This proves the equivariance of ψ.

Since we want to apply center manifold reduction to Γf , let us denote by

W c,Wh ⊂ V n × Ω

The center and hyperbolic subspaces of DΓf (0). These spaces are invariant
under the action of {Aσi}

n
i=1, as follows from the equivariance of DΓf (0).

We write P c and Ph for the projections corresponding to

V n × Ω = W c ⊕Wh . (3.6.14)

The following lemma relates the center and hyperbolic subspaces of DΓf (0)
to those of DΓf,0(0).

79



CHAPTER 3. CENTER MANIFOLDS OF COUPLED CELL NETWORKS

Lemma 3.6.3. The space Wh satisfies

Wh = (Wh, 0) ⊂ V n × Ω . (3.6.15)

Furthermore, setting l := dim Ω, there exist vectors {wi}li=1 in Wh and a
basis {λi}li=1 for Ω, such that the vectors wi := (wi, λi) ∈ V n × Ω satisfy

W c = (Wc, 0)⊕ span{wi : i = 1, . . . l} . (3.6.16)

Proof. By definition of Γf , we see that its linearisation is of the form

DΓf (0) =

ˆ

DΓf,0(0) v
0 0

˙

, (3.6.17)

corresponding to the natural decomposition of V n × Ω. Here, v is a linear
map from Ω to V n that is of no further importance to us. Now suppose
that vκ ∈ V n is a generalized eigenvector of DΓf,0(0) corresponding to the
eigenvalue κ ∈ R. It can then be seen from the above matrix that (vκ, 0) ∈
V n × Ω is a generalized eigenvector of DΓf (0) corresponding to the same
eigenvalue. This likewise holds for complex eigenvalues. In particular, we
conclude that

(Wc/h, 0) ⊂W c/h . (3.6.18)

Next, we note that the spectrum of DΓf (0) can be obtained from that of
DΓf,0(0) by l times adding the eigenvalue 0. Since 0 is a purely imaginary
number, it follows that we have in fact

(Wh, 0) = Wh . (3.6.19)

Moreover, we see that there exist vectors {w′i}li=1 in V n × Ω such that

W c = (Wc, 0)⊕ span{w′i : i = 1, . . . l} . (3.6.20)

In fact, these w′i are generalized eigenvectors of DΓf (0) for the eigenvalue 0
that are not in (Wc, 0). Writing w′i = (wi,c +wi,h, λi) for wi,c/h ∈Wc/h and
λi ∈ Ω, and noting that

V n × Ω = W c ⊕Wh , (3.6.21)

we may conclude that {λi}li=1 forms a basis for Ω. If we now set wi :=
(wi,h, λi) =: (wi, λi), we see that indeed

(Wc, 0)⊕ span{wi : i = 1, . . . l}
= (Wc, 0)⊕ span{w′i : i = 1, . . . l} = W c .

(3.6.22)

This proves the lemma.
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We are now in a position to prove Theorem 3.6.1. In any center manifold,
the projection πc : Mc ⊂ Rn → Xc gives rise to a conjugate system on the
center subspace Xc. However, since the space W c is in general not equal
to Wc × Ω, some more work has to be done. Recall that we denote by Pc
and Ph the projections on Wc and Wh respectively, corresponding to the
decomposition

V n = Wc ⊕Wh . (3.6.23)

Likewise, we denoted by P c and Ph the projections on W c and Wh for

V n × Ω = W c ⊕Wh . (3.6.24)

Because the spaces Wc/h and W c/h are {Aσi} and {Aσi}-invariant respec-
tively, it follows that Pc/h and P c/h commute with Aσi and Aσi , respectively.

Proof of Theorem 3.6.1. We begin by constructing a vector field onW c con-
jugate to Γf |Mc

, satisfying an analogue of the three bullet points in Theorem
3.6.1. From it, we then construct the required vector field on Wc × Ω.

It is clear that the projection P c|Mc
: Mc → W c defines a global chart

for the manifold Mc. Hence, by taking the pushforward of Γf |Mc we get a
Ck-vector field R1 on W c defined by

R1(xc) = P cΓf (xc + ψ(xc)) for xc ∈W c . (3.6.25)

We note that it has the following properties: First of all, because ψ(0) = 0
and Γf (0) = 0, we see that

R1(0) = P cΓf (0) = 0 . (3.6.26)

Next, the derivative of R1 at the origin satisfies

DR1(0)v = P cDΓf (0)(v +Dψ(0)v) = P cDΓf (0)v (3.6.27)

for all v ∈ W c, where we have used that Dψ(0) = 0. Hence, we have the
identity DR1(0) = P cDΓf (0)|W c

. From this it follows that the spectrum
of DR1(0) lies entirely on the imaginary axis. Finally, the vector field R1

shares the symmetries of Γf . Indeed, by using Lemma 3.6.2 we get

R1(Aσixc) = P cΓf (Aσixc + ψ(Aσixc)) = P cΓf (Aσixc +Aσiψ(xc))

= P cAσiΓf (xc + ψ(xc)) = AσiP cΓf (xc + ψ(xc))

= AσiR1(xc) ,

(3.6.28)

for all i ∈ {1, . . . n} and xc ∈W c.
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Next, we define the linear map

P ′ : W c →Wc × Ω , (x, λ) 7→ (Pc(x), λ) . (3.6.29)

By Lemma 3.6.3, we know that the space W c can be written as

W c = (Wc, 0)⊕ span{wi : i = 1, . . . l} , (3.6.30)

for vectors wi = (wi, λi) with wi ∈Wh and {λi}li=1 a basis for Ω. Because P ′
is the identity on (Wc, 0) and sends the elements wi = (wi, λi) to (0, λi), we
conclude that it is a bijection. Furthermore, the map P ′ is {Aσi}-equivariant,
as

P ′ ◦Aσi(x, λ) = P ′(Aσix, λ) = (Pc(Aσix), λ)

= (AσiPc(x), λ) = Aσi(Pc(x), λ) = Aσi ◦ P
′(x, λ) ,

(3.6.31)

for all i ∈ {1, . . . n} and (x, λ) ∈W c. Note that this also implies the {Aσi}-
invariance of Wc × Ω. Taking the pushforward of R1 under P ′ now yields a
Ck-vector field R2 on Wc × Ω given by

R2(x) = P ′ ◦R1 ◦P ′
−1

(x) = P ′ ◦P c ◦Γf [P ′
−1

(x)+ψ(P ′
−1

(x))] , (3.6.32)

for x inWc×Ω. From the properties of R1 it follows that R2 maps 0 to 0, that
DR2(0) has a purely imaginary spectrum and that R2 is {Aσi}-equivariant.

Finally, we want to show that the conjugacy P := P ′◦P c : V n×Ω→Wc×
Ω is as stated in Theorem 3.6.1, i.e. that P (x, λ) = (Pc(x), λ). However, we
know that P c vanishes onWh = (Wh, 0), hence so does P . Likewise, we may
conclude that P is the identity on (Wc, 0), as both P c and P ′ are. Moreover,
for any of the elements wi := (wi, λi) ∈ W c we have that P (wi, λi) =
P ′(wi, λi) = (0, λi), where we have used that wi ∈ Wh. This proves that P
is indeed of the required form. In particular, since it is the identity on the
Ω-component, and since Γf (x) has Ω-component 0, we conclude that

R2(x) = P ′ ◦ P c ◦ Γf [P ′
−1

(x) + ψ(P ′
−1

(x))]

= P ◦ Γf [P ′
−1

(x) + ψ(P ′
−1

(x))]
(3.6.33)

has vanishing Ω-component as well. Therefore, we may write it as

R2(x, λ) = (R(x, λ), 0) , (3.6.34)

and it follows from the properties of R2 that R(0, 0) = 0, that DR0(0) has
a purely imaginary spectrum, where we have set R0 := R(•, 0), and that R
is {Aσi}-equivariant for fixed λ. This proves the theorem.
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Next we want to describe all the reduced vector fields R that can be ob-
tained after center manifold reduction in a fundamental network vector field
through the procedure of Theorem 3.6.1. We start with the linear part of R.

Theorem 3.6.4. Let Γf be a fundamental network vector field satisfying the
conditions of Theorem 3.5.1 and let R : Wc × Ω → Wc be its corresponding
reduced vector field. Then the linear part of R is given explicitly by

DxR(0, 0) = DΓf,0(0)|Wc

DλR(0, 0) = Pc ◦DλΓf (0, 0) .
(3.6.35)

Moreover, let

V n = W1 ⊕W2 (3.6.36)

be any decomposition of V n into {Aσi}-invariant spaces and suppose that we
are given a linear map

R̃ : W1 × Ω→W1 (3.6.37)

such that R̃|W1×{0} has a purely imaginary spectrum. Assume furthermore
that R̃ intertwines the action of {Aσi} on W1×Ω with that of {Aσi} on W1,
i.e. that R(Aσixc, λ) = AσiR(xc, λ) for all (xc, λ) ∈Wc ×Ω and all σi ∈ Σ.
Then there exists a fundamental network vector field Γg such that the center
and hyperbolic subspaces of DΓg,0(0) are equal to W1 and W2 respectively,
and such that (the linear part of) its reduced vector field is equal to R̃.

Proof. Recall from the proof of Theorem 3.6.1 that we have

DR2(0, 0) = P ′ ◦ P c ◦DΓf (0)|W c
◦P ′−1

, (3.6.38)

where R2 = (R, 0) : Wc×Ω→Wc×Ω and where P ′ : W c →Wc×Ω is given
by P ′(x, λ) = (Pc(x), λ). The linear map P ′ is the identity on (Wc, 0) and
sends the elements (wi, λi) ∈ W c from Lemma 3.6.3 to (0, λi), from which
it follows that we may write

P ′
−1

(xc, λ) = (xc +Q(λ), λ) (3.6.39)

for a linear map Q : Ω→Wh. Explicitly this map is given by

Q(λi) = wi (3.6.40)

for (wi, λi) an element as described in Lemma 3.6.3 and where we use that
{λi}li=1 forms a basis for Ω. From this we see that

DR2(0, 0)(xc, λ) = P ′ ◦ P c ◦DΓf (0)(xc +Q(λ), λ)

= P ′[ (DΓf,0(0)(xc +Q(λ)) +DλΓf (0, 0)(λ), 0 ) ]

= (Pc[DΓf,0(0)(xc +Q(λ)) +DλΓf (0, 0)(λ)], 0 )

= (DΓf,0(0)(xc) + Pc ◦DλΓf (0, 0)(λ), 0 ) ,

(3.6.41)
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where in the second step we have used that the linearisation of Γf is given
by

DΓf (0) =

ˆ

DΓf,0(0) DλΓf (0, 0)
0 0

˙

. (3.6.42)

As R is defined by R2 = (R, 0), we see that indeed

DxR(0, 0) = DΓf,0(0)|Wc

DλR(0, 0) = Pc ◦DλΓf (0, 0) .
(3.6.43)

This proves the first part of the theorem.
As for the second part, if W1, W2 and R̃ are given as in the statement of

the theorem, then we may define a linear vector field on V n×Ω = W1⊕W2⊕Ω
by the matrix

A :=

¨

˝

R̃|W1 0 R̃|Ω
0 (−) IdW2

0
0 0 0

˛

‚ . (3.6.44)

We claim that A is a λ-family of fundamental network vector fields. Indeed,
it follows from the invariance of W1 and W2 and from the equivariance of R̃
that A commutes with Aσi = (Aσi , IdΩ) for all σi ∈ Σ. Note in particular
that this implies that the map

v :=

ˆ

R̃|Ω
0

˙

: Ω→ V n (3.6.45)

from the right hand corner of A satisfies Aσiv = v. From this it follows that
vσi = (Aσiv)σ1 = vσ1 for all σi ∈ Σ, where σ1 denotes the unit in Σ. Hence
the n components of v(λ) ∈ V n are all equal. This latter fact is necessarily
the case for a λ-family of fundamental network vector fields, since it is only
the response function and not the network structure that depends on λ. We
will therefore write A = Γg.

It is clear that (−) IdW2
has a purely hyperbolic spectrum, whereas R̃|W1

is given to have only eigenvalues on the imaginary axis. Hence we conclude
that the center and hyperbolic subspaces of DΓg,0(0) are equal to W1 and
W2, respectively. Furthermore, it follows from the first part of the theorem
that the reduced vector field of A = Γg is indeed equal to R̃. This concludes
the proof.

Theorem 3.6.4 tells us that any linear map satisfying the bullet points of
Theorem 3.6.1 can occur as the linear part of the reduced vector field of
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a fundamental network vector field. The following result tells us that fur-
thermore any equivariant nonlinear part can be realised in a reduced vector
field.

Theorem 3.6.5. Let A : V n ×Ω→ V n ×Ω be a (fixed) linear fundamental
network vector field and let W c, Wh, Wc and Wh be the invariant spaces
determined by A and A|V n . It follows from Theorem 3.6.4 that the linear
part of the reduced vector field R of a fundamental network vector field Γf is
completely determined by the linear part of Γf . In particular, if DΓf (0) = A
then we will denote the linear part of R by

Ã := DR(0) : Wc × Ω→Wc . (3.6.46)

Let G : Wc × Ω → Wc be a C1 map satisfying G(0) = 0 and DG(0) = 0
and assume furthermore that G ◦ Aσi = Aσi ◦G for all σi ∈ Σ. Then there
exists a fundamental network vector field Γf with linear part A satisfying
the conditions of Theorem 3.5.1 and with reduced vector field given locally by
Ã+G.

Proof. Given G : Wc × Ω → Wc we may define the vector field (G, 0) on
Wc × Ω by

(G, 0)(xc, λ) := (G(xc, λ), 0) . (3.6.47)

Next, we define the vector field on Wc given by

G̃ := P ′
−1 ◦ (G, 0) ◦ P ′ . (3.6.48)

Note that G̃ is {Aσi}-equivariant by construction and satisfies G̃(0) = 0

and DG̃(0) = 0. We furthermore see that G̃ has vanishing λ-component, as
this is the case for (G, 0) and because P ′ respects the λ-component. These
properties likewise hold for the vector field (G̃, 0) onWc⊕Wh = V n×Ω, from
which it follows that the vector field A + (G̃, 0) is a fundamental network
vector field with linear part A.

Finally, let Γf be a fundamental network vector field satisfying the con-
ditions of Theorem 3.5.1 and agreeing locally with A + (G̃, 0) around the
origin. The dynamics on the center manifold of Γf is then conjugate to

P cΓf (xc + Ψ(xc)) = P c[A+ (G̃, 0)](xc + Ψ(xc))

= P cA(xc + Ψ(xc)) + G̃(xc)

= A(xc) + G̃(xc) = (A+ G̃)(xc)

(3.6.49)
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for xc ∈ W c sufficiently close to the origin. Conjugating by P ′ we get the
system

9x = (Ãx+G(x), 0) (3.6.50)

on a neighbourhood around the origin in Wc × Ω, from which we conclude
that the reduced vector field of Γf is indeed given locally by Ã + G. This
proves the theorem.

Combining Theorems 3.6.4 and 3.6.5 we see that any vector field R satisfying
the bullet points of Theorem 3.6.1 can be achieved as the reduced vector
field of some fundamental network vector field Γf . The linear part of R is
completely determined by the linear part of Γf , and we see that the nonlinear
part of R can be any equivariant map on Wc (which is determined once the
linear part of Γf is fixed). This last observation will be important in the
following remark.

Remark 3.6.6. It is well known that a center manifold for the general ODE
9x = F (x) satisfies the tangency equation

Dψ(xc) · πcF (xc + ψ(xc)) = πhF (xc + ψ(xc)) , (3.6.51)

for xc ∈ Xc, and where the graph of ψ : Xc → Xh equals the center manifold.
In particular, keeping πc and πh, that is Xc and Xh fixed, one can use this
formula to express any Taylor coefficient of ψ around 0 as a rational function
of a finite set of Taylor coefficients of F around 0. See for example [29] or
[30]. This phenomenon is known as finite determinacy.

Returning to the setting of networks, if DΓf (0) and therefore Wc/h and
W c/h are fixed, then the Taylor coefficients of the vector field on W c,

R1(xc) = P cΓf (xc + ψ(xc)) , (3.6.52)

as well as those of

R2(x) = P ′ ◦R1 ◦ P ′
−1

(x) for x ∈Wc × Ω , (3.6.53)

are given by rational functions of the Taylor coefficients of Γf . Combined
with Theorems 3.6.5 and 3.6.4 that state that any reduced vector field can
be realised at least locally, we may conclude that if some rational function
of the Taylor coefficients of either of the two vector fields (3.6.52) or (3.6.53)
is not forced zero by the symmetry, then it will in general not vanish. More
precisely, such a rational function vanishing will be equivalent to some ra-
tional function of the coefficients of Γf vanishing. Note that to verify the
occurrence of some bifurcation, one often needs to check that some rational
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functions of the Taylor coefficients of the vector field do not vanish. There-
fore, center manifold reduction allows us to determine generic bifurcations in
network vector fields. Of course, to verify whether such a bifurcation really
occurs in a particular network, one actually has to compute and evaluate
these rational functions, which may involve quite a complicated computa-
tion. 4
Remark 3.6.7. Which linear subspaces may occur as the center subspace Wc

in a generic parameter-family of network dynamical systems, is a much more
subtle question. The following partial answer is known. A representation
of a semigroup Σ is called “indecomposable” if its representation space can-
not be written as a non-trivial direct sum of invariant subspaces. A result
known as the Krull-Schmidt theorem states that every (finite dimensional)
representation of Σ can be written as the direct sum of indecomposable rep-
resentations that is unique up to isomorphism. It is furthermore known that
an indecomposable representation can be classified as being of either real,
complex or quaternionic type. It was shown in [24] that under a specific con-
dition on the representation of Σ, a one-parameter steady state bifurcation
can generically only occur if the center subspace Wc is an indecomposable
representation of real type. In particular, this is the case for the fundamental
networks of our three example networks A, B and C. In these examples, the
representation space splits as the direct sum of two indecomposable repre-
sentations of real type, both of which may therefore occur as Wc, while the
full space V 3 can generically not be equal to Wc. 4
From the above discussion we see that the problem of finding generic bifurca-
tions for homogenous coupled cell network vector fields is reduced to finding
those for a class of equivariant reduced vector fields. As it turns out, this
latter class admits a rather straightforward description which states that,
roughly speaking, they come with a network structure themselves. More
precisely, we have the following theorem.

Theorem 3.6.8. Let

V n = W1 ⊕W2 (3.6.54)

be a decomposition of the phase space of a fundamental network into {Aσi}-
invariant spaces, and denote by P1 : V n → W1 and i1 : W1 → V n the
projection onto W1 and the inclusion of W1 into V n, respectively.

A map F : W1 →W1 is {Aσi}-equivariant if and only if the map

i1 ◦ F ◦ P1

is a fundamental network vector field.
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Proof. Recall that both P1 and i1 are {Aσi}-equivariant maps. So if i1◦F ◦P1

commutes with Aσi for all i, then so does

F = P1 ◦ (i1 ◦ F ◦ P1) ◦ i1 . (3.6.55)

For the same reason, i1 ◦ F ◦ P1 is {Aσi}-equivariant when F is. Moreover,
it follows from Theorem 3.4.5 that this property is equivalent to i1 ◦ F ◦ P1

having the structure of a fundamental network. Here we use in particular
that i1 ◦ F ◦ P1 is a vector field on V n. This concludes the proof.

3.7 Synchrony and the Center Manifold

Until now we have focused on developing a center manifold theory for funda-
mental networks. However, out of our three leading examples, only Example
A is conjugate to its own fundamental network, while networks B and C are
embedded in a fundamental network as a robust synchrony space. Moreover,
by Theorem 3.4.6 this is true in general. The following theorem states that
center manifold reduction respects robust synchrony spaces in a natural way.

Theorem 3.7.1. Let SynP ⊂ V n be a robust synchrony space in a funda-
mental network. For every λ0 ∈ Ω, the map P = (Pc, Id) : V n×Ω→Wc×Ω
of Theorem 3.6.1 maps the space

{(x, λ) ∈Mc : x ∈ SynP , λ = λ0}

bijectively onto the space

{(x, λ) ∈Wc × Ω : x ∈ SynP , λ = λ0} .

Proof. Recall from Theorem 3.6.1 that P = P ′ ◦ P c is an {Aσi}-equivariant
map that sends a vector (x, λ) in V n × Ω to a vector in Wc × Ω with the
same λ-component. Therefore, keeping λ = λ0 fixed we may think of P
as an {Aσi}-equivariant map from V n to Wc. Let us likewise use Mc to
denote what is really {(x, λ) ∈Mc : λ = λ0}. It follows from Theorem 3.6.1
that, under these identifications, P |Mc : Mc → Wc is an {Aσi}-equivariant
bijection between {Aσi}-invariant sets. We will keep these identifications
throughout this proof. In particular, what we want to show in this notation
is that P maps Mc ∩ SynP bijectively onto Wc ∩ SynP .

For this purpose, let us denote by ic : Wc → V n the inclusion of Wc

into V n = Wc ⊕ Wh. The map ic ◦ P is now an {Aσi}-equivariant map
from V n into itself. Therefore, we may conclude by Theorem 3.4.5 that it
is a fundamental network vector field. In particular, we see that it maps
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SynP into itself and from this we conclude that P |Mc
maps Mc ∩ SynP into

Wc ∩ SynP .
On the other hand, it follows that (P |Mc)

−1 : Wc → Mc is {Aσi}-
equivariant as well. Therefore, so is the function iMc

◦ (P |Mc
)−1 ◦Pc : V n →

V n, where we use iMc
: Mc → V n to denote the natural inclusion of Mc

into V n. As before, we conclude that iMc
◦ (P |Mc

)−1 ◦ Pc is a fundamental
network vector field and therefore sends SynP into itself. From this it follows
that (P |Mc)

−1 maps Wc ∩ SynP into Mc ∩ SynP and we conclude that this
happens in fact bijectively. This proves the theorem.

Recall that the linearisation of a fundamental network vector field gives rise
to a decomposition of V n into invariant subspacesWc andWh. As the possi-
ble dynamics on the former subspace is completely determined by the action
of Σ on this space, we may conclude that isomorphic splittings of V n into
Wc and Wh give rise to conjugate dynamics and therefore equivalent bifur-
cations. However, this reasoning seems to lose sight of (robust) synchrony
spaces, such as the one representing the original network vector field in its
fundamental one. The following theorem settles this, as it tells us that syn-
chrony spaces do behave well under choosing different decompositions of V n
into invariant subspaces.

Theorem 3.7.2. Let {Wi}ki=1 and {W ′i}ki=1 be two sets of {Aσi}-invariant
subspaces of V n such that

V n =

k⊕
i=1

Wi =

k⊕
i=1

W ′i . (3.7.1)

Suppose furthermore that for every i, Wi and W ′i are isomorphic as {Aσi}-
invariant subspaces. Then, for any robust synchrony space SynP and any
isomorphism φj : Wj → W ′j, it holds that φj restricts to a bijection be-
tween SynP ∩Wj and SynP ∩W ′j. In particular, for every j there exists an
isomorphism between Wj and W ′j respecting SynP in this way.

Proof. It is clear that if we have proven that any isomorphism between Wj

and W ′j respects SynP , that we have then shown that there exists an iso-
morphism respecting this synchrony space. This is because Wj and W ′j are
isomorphic, i.e. there exists (at least one) isomorphism between them. Let
φj now be an isomorphism between Wj and W ′j . By choosing for every
i 6= j an isomorphism φi between Wi and W ′i , we can define the function
Φ : V n → V n given by

Φ :

k∑
i=1

xi 7→
k∑
i=1

φi(xi) , (3.7.2)
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for xi ∈ Wi. First of all, because this map is an {Aσi}-equivariant map by
construction, we conclude that it is in fact a fundamental network vector
field. In particular, it sends SynP to itself. Secondly, because it sends an
element in Wj to an element in W ′j , we conclude that Φ sends the space
SynP ∩Wj into the space SynP ∩W ′j . Lastly, because Φ|Wj

= φj we conclude
that φj sends SynP ∩Wj into SynP ∩W ′j . By the same argument we see that
φ−1
j sends SynP ∩W ′j into SynP ∩Wj , from which it follows that this happens

in fact bijectively. This concludes the proof.

Remark 3.7.3. If we are given two decompositions of V n into invariant sub-
spaces

V n = Wc ⊕Wh = W ′c ⊕W ′h (3.7.3)

and if we know thatWc andW ′c are isomorphic, then it follows that the same
holds true for Wh and W ′h. Namely, writing Wc, W ′c, Wh and W ′h as the
direct sum of indecomposable representations, we get two indecomposable
splittings of V n. By the Krull-Schmidt theorem such a splitting is unique,
from which it follows that Wh and W ′h are indeed isomorphic as well. 4
We now have a recipe for classifying the generic bifurcations of a homoge-
neous coupled cell network. One has to go through the following steps:

• One first constructs the fundamental network of the homogeneous net-
work.

• Next, one determines all possible representation types of generic center
subspaces Wc that can occur in a bifurcation.

• After that, one determines all possible reduced vector fields of the
fundamental network on Wc. This is equivalent to finding all the
equivariant vector fields on Wc. As it turns out, an efficient way of
finding these is by using that F : Wc → Wc is symmetric if and only
if ic ◦ F ◦ Pc : V n → V n is a fundamental network vector field. See
Theorem 3.6.8.

• Finally, Theorem 3.7.1 tells us that the dynamics on the center mani-
fold of the original network can be found by restricting the dynamics
on the center manifold of the fundamental network to an appropriate
synchrony space. Namely, we know that the dynamics of the original
network vector field is embedded as a robust synchrony space inside
the fundamental network and that center manifold reduction respects
it.
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Note that if one finds two decompositions V n = Wc ⊕ Wh = W ′c ⊕ W ′h
such that Wc and W ′c are isomorphic as representations of Σ, then for any
bifurcation that occurs alongWc there is an equivalent bifurcation alongW ′c.
By Theorem 3.7.2 this equivalence respects robust synchrony spaces, and in
particular the one that represents the original network.

3.8 Examples

In this section, we illustrate the machinery that we have developed. We
will show which co-dimension one steady state bifurcations one can expect
in networks B and C when the phase space of a single cell is V = R. In
particular, it will become clear that the difference in generic bifurcations
can be explained from the representations of the symmetry semigroups. For
network A, this was already shown in [23] with the help of normal form
theory.

3.8.1 Network B
Recall from Section 3.3 that network B is realised as the robust synchrony
space {X2 = X3} inside the fundamental network

9X1 = f(X1, X2, X3, X4)

9X2 = f(X2, X4, X3, X4)

9X3 = f(X3, X4, X3, X4)

9X4 = f(X4, X4, X3, X4)

(3.8.1)

where it can be found by setting X1 = x1, X2 = X3 = x2 and X4 = x3. For
the moment, we suppress the dependence of f on the parameter λ in our
notation. Equation (3.8.1) describes all vector fields on R4 that commute
with the maps

(X1, X2, X3, X4) 7→ (X2, X4, X3, X4) ,

(X1, X2, X3, X4) 7→ (X3, X4, X3, X4) ,

(X1, X2, X3, X4) 7→ (X4, X4, X3, X4) .

(3.8.2)

It can be shown [21] that any decomposition of R4 into indecomposable
representations of these symmetries is isomorphic to the splitting

R4 = {X1 = X2 = X3 = X4} ⊕ {X4 = 0} (3.8.3)
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with corresponding projections given by

P (X1, X2, X3, X4) = (X4, X4, X4, X4) (3.8.4)

and

Q(X1, X2, X3, X4) = (X1 −X4, X2 −X4, X3 −X4, 0) . (3.8.5)

Let us first assume that the center subspace is isomorphic to the subrep-
resentation Syn0 := {X1 = X2 = X3 = X4}. Theorem 3.6.8 says that a
reduced vector field F = F (X) : Syn0 → Syn0 is equivariant if and only if

(iSyn0
◦F ◦P )(X1, X2, X3, X4) = (F (X4), F (X4), F (X4), F (X4)) (3.8.6)

is a fundamental network vector field. As this is clearly the case, we see
that there are no constraints on F . In particular, the bifurcation problem
reduces to solving F (X,λ) = 0 given that F (0, 0) = 0 and DXF (0, 0) = 0.
This will generically yield a fully synchronous saddle node bifurcation.

Now for the representation {X4 = 0}: if we parametrize it by X1, X2

and X3, then a general vector field on this space can be written as

F (X1, X2, X3) =

¨

˝

F1(X1, X2, X3)
F2(X1, X2, X3)
F3(X1, X2, X3)

˛

‚ . (3.8.7)

According to Theorem 3.6.8, the expression

i{X4=0} ◦ F ◦Q(X1, X2, X3, X4) =

¨

˚

˚

˝

F1(X1 −X4, X2 −X4, X3 −X4)
F2(X1 −X4, X2 −X4, X3 −X4)
F3(X1 −X4, X2 −X4, X3 −X4)

0

˛

‹

‹

‚

(3.8.8)

must be a fundamental network vector field. Using that a fundamental
network vector field is determined by its first component, we obtain the
equalities
¨

˝

F1(X1 −X4, X2 −X4, X3 −X4)
F2(X1 −X4, X2 −X4, X3 −X4)
F3(X1 −X4, X2 −X4, X3 −X4)

0

˛

‚=

¨

˝

F1(X1 −X4, X2 −X4, X3 −X4)
F1(X2 −X4, 0, X3 −X4)
F1(X3 −X4, 0, X3 −X4)
F1(0, 0, X3 −X4)

˛

‚ . (3.8.9)

Therefore, a general equivariant vector field on {X4 = 0} is given by

F (X1, X2, X3) =

¨

˝

F1(X1, X2, X3)
F1(X2, 0, X3)
F1(X3, 0, X3)

˛

‚ , (3.8.10)
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with the additional condition that F1(0, 0, X3) = 0. Since this means that we
may set F1(X1, X2, X3) = X2G(X1, X2, X3) +X1H(X1, X3), we can write

F (X1, X2, X3) =

¨

˝

X2G(X1, X2, X3) +X1H(X1, X3)
X2H(X2, X3)
X3H(X3, X3)

˛

‚ . (3.8.11)

Recall also that we are only interested in the dynamics on the synchrony
space {X2 = X3}. We thus have to solve the equations

X2G(X1, X2) +X1H(X1, X2) = 0
X2H(X2, X2) = 0

. (3.8.12)

To solve these, let us include the parameter in our notation again and write

G(X1, X2, λ) = C +O(|X1|+|X2|+|λ|) , (3.8.13)

and

H(X1, X2, λ) = a1X1 + a2X2 + a3λ+O(|X1|2+|X2|2+|λ|2) . (3.8.14)

Note that H(0, 0, 0) = 0, which follows from the fact that the linearisation
with respect to X of the reduced vector field in (3.8.12) is noninvertible at
the origin X1 = X2 = λ = 0. Focussing first on the second equation of
(3.8.12),

X2H(X2, X2, λ) = X2[(a1 +a2)X2 +a3λ+O(|X2|2+|λ|2)] = 0 , (3.8.15)

we see that either X2 = 0 or, if a1 + a2 6= 0, that X2 = X2(λ) = − a3

a1+a2
λ+

O(|λ|2) by the implicit function theorem. If we set X2 = 0, then the first
equation of (3.8.12) reduces to

X1H(X1, 0, λ) = X1[a1X1 + a3λ+O(|X1|2+|λ|2)] = 0 . (3.8.16)

This either gives X1 = 0 or X1 = X1(λ) = −a3

a1
λ +O(|λ|2) if a1 6= 0. If we

set X2 = X2(λ) = − a3

a1+a2
λ+O(|λ|2) then the first equation reduces to

−C a3

a1 + a2
λ+ a1X

2
1 +O(|X1|3+|X1||λ|+|λ|2) = 0 . (3.8.17)

Next, substituting λ = ±µ2 and X1 = µY gives us

∓C a3

a1 + a2
µ2 + a1µ

2Y 2 +O(|µ|3) = 0 , (3.8.18)
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or, after dividing by µ2,

∓C a3

a1 + a2
+ a1Y

2 +O(|µ|) = 0 . (3.8.19)

For one choice of the sign in λ = ±µ2 this gives no solutions with µ = 0,
whereas for the other we find the solutions

(Y, µ) =

˜

±

d

|Ca3|
|a1(a1 + a2)|

, 0

¸

. (3.8.20)

Assuming C, a3 6= 0, the implicit function theorem now tells us that these
solutions continue in µ as

Y (µ) = ±

d

|Ca3|
|a1(a1 + a2)|

+O(|µ|) , (3.8.21)

from which it follows that we have the branches

X1(λ) = ±

d

Ca3

a1(a1 + a2)
λ+O(|λ|) . (3.8.22)

To summarise, we have found the following solutions to equation (3.8.12):

X1(λ) = X2(λ) = 0 ,

X1(λ) = −a3

a1
λ+O(|λ|2), X2(λ) = 0 ,

X1(λ) = ±

d

Ca3

a1(a1 + a2)
λ+O(|λ|), X2(λ) = − a3

a1 + a2
λ+O(|λ|2) .

(3.8.23)

Note that in all cases we have X4 = 0, hence the first branch is fully syn-
chronous, the second is partially synchronous and the last is fully asyn-
chronous.

To determine the stability of these branches, we linearise the vector field
in (3.8.12) in the X-variables to obtain the Jacobian
´

2a1X1 + a2X2 + a3λ+O(|X1|2+|X2|+|λ|2) C +O(|X1|+|X2|+|λ|)
0 2(a1 + a2)X2 + a3λ+O(|X2|2+|λ|2)

¯

.

For the fully synchronous branch, this Jacobian reduces to
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ˆ

a3λ+O(|λ|2) C +O(|λ|)
0 a3λ+O(|λ|2)

˙

, (3.8.24)

hence we find two times the eigenvalue a3λ + O(|λ|2). Likewise, for the
partially synchronous branch we find a3λ + O(|λ|2) and −a3λ + O(|λ|2).
For the fully nonsynchronous one we find ±2a1

b

Ca3

a1(a1+a2)λ + O(|λ|) and

−a3λ+O(|λ|2). In particular, we see that the partially synchronous branch
is always a saddle, and the fully synchronous branch can only give its stability
to the fully nonsynchronous one.

Recalling that network B can be obtained from network rB by making
the identifications X1 = x1, X2 = X3 = x2 and X4 = x3, and using that the
center subspace in rB is given by {X4 = 0}, the above analysis proves the
claims on network B of the introduction.

3.8.2 Network C
Recall from Section 3.3 that network C is realised inside the fundamental
network

9X1 = f(X1, X2, X3, X4, X5)

9X2 = f(X2, X4, X3, X4, X5)

9X3 = f(X3, X5, X3, X4, X5)

9X4 = f(X4, X4, X3, X4, X5)

9X4 = f(X5, X4, X3, X4, X5)

(3.8.25)

by setting X1 = X3 = x1, X2 = X5 = x2 and X4 = x3. This latter system
describes all vector fields on R5 with the symmetries

(X1, X2, X3, X4, X5) 7→ (X2, X4, X3, X4, X5) ,

(X1, X2, X3, X4, X5) 7→ (X3, X5, X3, X4, X5) ,

(X1, X2, X3, X4, X5) 7→ (X4, X4, X3, X4, X5) ,

(X1, X2, X3, X4, X5) 7→ (X5, X4, X3, X4, X5) .

(3.8.26)

As shown in [21], the center and hyperbolic subspaces of its linearisation at
a fully synchronous point will generically define a splitting of R5 isomorphic
to

R5 = {X1 = · · · = X5} ⊕ {X4 = 0} . (3.8.27)
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Projections corresponding to this decomposition are given by

P (X1, X2, X3, X4, X5) = (X4, X4, X4, X4, X4) (3.8.28)

and

Q(X1, X2, X3, X4, X5) = (X1−X4, X2−X4, X3−X4, 0, X5−X4) . (3.8.29)

If we take the fully synchronous space to be the center subspace, then gener-
ically we again obtain a fully synchronous saddle node bifurcation, as was
the case in network B as well. If instead we take {X4 = 0} to be the center
subspace, then a reduced vector field for the system (3.8.25) corresponds to
an equivariant vector field on this space. Following Theorem 3.6.8, these
correspond to the functions F = (F1, F2, F3, F5) : R4 → R4 such that the
expression

i{X4=0}◦F ◦Q(X1, . . . , X5) =

¨

˚

˚

˚

˚

˝

F1(X1 −X4, X2 −X4, X3 −X4, X5 −X4)
F2(X1 −X4, X2 −X4, X3 −X4, X5 −X4)
F3(X1 −X4, X2 −X4, X3 −X4, X5 −X4)

0
F5(X1 −X4, X2 −X4, X3 −X4, X5 −X4)

˛

‹

‹

‹

‹

‚

is a fundamental network vector field. This yields the equalities
¨

˚

˚

˚

˚

˝

F1(X1 −X4, X2 −X4, X3 −X4, X5 −X4)
F2(X1 −X4, X2 −X4, X3 −X4, X5 −X4)
F3(X1 −X4, X2 −X4, X3 −X4, X5 −X4)

0
F5(X1 −X4, X2 −X4, X3 −X4, X5 −X4)

˛

‹

‹

‹

‹

‚

=

¨

˚

˚

˚

˚

˝

F1(X1 −X4, X2 −X4, X3 −X4, X5 −X4)
F1(X2 −X4, 0, X3 −X4, X5 −X4)
F1(X3 −X4, X5 −X4, X3 −X4, X5 −X4)
F1(0, 0, X3 −X4, X5 −X4)
F1(X5 −X4, 0, X3 −X4, X5 −X4)

˛

‹

‹

‹

‹

‚

.

(3.8.30)

It follows that a general equivariant vector field on {X4 = 0} is of the form

F (X1, X2, X3, X5) =

¨

˚

˚

˝

F1(X1, X2, X3, X5)
F1(X2, 0, X3, X5)
F1(X3, X5, X3, X5)
F1(X5, 0, X3, X5)

˛

‹

‹

‚

(3.8.31)

with the additional condition that F1(0, 0, X3, X5) = 0. This latter condition
can be reformulated by writing

F1(X1, X2, X3, X5) = X1G(X1, X3, X5)+X2H(X1, X2, X3, X5) , (3.8.32)
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from which it follows that a general Σ-equivariant vector field has the form

F (X1, X2, X3, X5) =

¨

˚

˚

˝

X1G(X1, X3, X5) +X2H(X1, X2, X3, X5)
X2G(X2, X3, X5)
X3G(X3, X3, X5) +X5H(X3, X5, X3, X5)
X5G(X5, X3, X5)

˛

‹

‹

‚

.

(3.8.33)

If we now restrict to network C, i.e. to the synchrony space {X1 = X3, X2 =
X5}, then the steady state problem reduces to solving the equations

X1G(X1, X1, X2, λ) +X2H(X1, X2, λ) = 0 ,

X2G(X2, X1, X2, λ) = 0 .
(3.8.34)

At this point, we include the parameter again to investigate generic steady
state bifurcations. So we shall write

G(X1, X2, X3, λ) = a1X1 + a2X2 + a3X3 + a4λ+O(|X|2+|λ|2) ,

H(X1, X2, λ) = C + b1X1 + b2X2 + b3λ+O(|X|2+|λ|2) .
(3.8.35)

The second line in equation (3.8.34) is solved when X2 = 0 or when

G(X2, X1, X2, λ) = a1X2+a2X1+a3X2+a4λ+O(|X|2+|λ|2) = 0 . (3.8.36)

Assuming a2 6= 0, the implicit function theorem then gives us that locally
all the solutions to equation (3.8.36) are given by

X1 = X1(X2, λ) = −a1 + a3

a2
X2 −

a4

a2
λ+O(|X2|2+|λ|2) . (3.8.37)

Let us first assume that X2 = 0. The first line in equation (3.8.34) is then
solved whenX1 = 0 or whenX1(λ) = −a4

a1+a2
λ+O(|λ|2), assuming a1+a2 6= 0.

Next, suppose we have the relation X1 = X1(X2, λ) = −a1+a3

a2
X2 − a4

a2
λ +

O(|X2|2+|λ|2). The first line in (3.8.34) then becomes the equation
„

−a1 + a3

a2
X2 −

a4

a2
λ

ˆ

(a1 + a2)

„

−a1 + a3

a2
X2 −

a4

a2
λ



+ a3X2 + a4λ

˙

+X2

ˆ

C + b1

„

−a1 + a3

a2
X2 −

a4

a2
λ



+ b2X2 + b3λ

˙

+O(|X2|3+|λ|3) = 0 ,

(3.8.38)

which can be rewritten as

CX2 +
a2

4a1

a2
2

λ2 +O(|X2|2+|λ||X2|+|λ|3) = 0 . (3.8.39)

97



CHAPTER 3. CENTER MANIFOLDS OF COUPLED CELL NETWORKS

Hence, assuming C 6= 0, the implicit function theorem gives the solution

X2 = X2(λ) =
−a2

4a1

Ca2
2

λ2 +O(|λ|3) . (3.8.40)

Combined with the relation

X1 = X1(X2, λ) = −a1 + a3

a2
X2 −

a4

a2
λ+O(|X2|2+|λ|2) , (3.8.41)

we then get

X1(λ) =
−a4

a2
λ+O(|λ|2) . (3.8.42)

To summarise, we have found the three bifurcation branches

X1(λ) = X2(λ) = 0 ,

X1(λ) =
−a4

a1 + a2
λ+O(|λ|2), X2(λ) = 0 ,

X1(λ) =
−a4

a2
λ+O(|λ|2), X2(λ) =

−a2
4a1

Ca2
2

λ2 +O(|λ|3) ,

(3.8.43)

where furthermore we have that X4 = 0 in all three cases. Note that this
makes the first branch fully synchronous, the second partially synchronous
and the last fully non synchronous. Note however that this third branch is
partially synchronous up to first order.

A stability analysis similar to that in Section 3.8.1 yields the eigenvalue
a4λ+O(|λ|2) twice for the fully synchronous branch. We thus assume that
a4 6= 0. For the partially synchronous branch we then find the eigenvalues
−a4λ+O(|λ|2) and a1a4

a1+a2
λ+O(|λ|2). For the fully non-synchronous branch

we find β1λ+O(|λ|2) and β2λ+O(|λ|2), where β1 and β2 satisfy

β1 + β2 = −a4
2a1 + a2

a2
and β1 · β2 = a2

4

a1

a2
. (3.8.44)

Note that for positive values of a1

a2
the expression 2a1+a2

a2
= 2a1

a2
+ 1 is neces-

sarily positive as well. Hence, the fully non-synchronous branch either takes
over the stability of the fully synchronous one, or remains a saddle. The
same holds true for the partially synchronous solution. However, when this
latter branch gains the stability of the fully synchronous one then it must
hold that a1

a1+a2
< 0. From this it follows that a2

a1
= a1+a2

a1
− 1 < 0 and

we see that in this case the nonsynchronous branch is necessarily a saddle.
We note that it is also possible that both the partially synchronous and the
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fully nonsynchronous branch are saddles, as there are values of a1 and a2 for

which a1

a2
is negative, but a1

a1+a2
=

´

a2

a1
+ 1

¯−1

is positive.
As network C is obtained from the fundamental system (3.8.25) by set-

ting X1 = X3 = x1, X2 = X5 = x2 and X4 = x3, we see that the results
obtained above hold for this former system under these identifications. This
proves the claims on network C of the introduction.
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